Seq2seq/chatbot/聊天机器人相关资源收集列表。 Know a resource that isn't listed below? Feel free to create a new , or open an .
在原来的chatbot-links的基础上,添加了一些更多的中文资源而组建的一个List,主要用于个人收集。感兴趣,一起建设完善的资源列表,方便萌新入门,请发送PR或Issue添加更多资源,各层面不限,欢迎添加自己的作品。
Codes
Framework: Tensorflow Demo result:
Hi → Hi.What is your name ? → Laura.What does that mean ? → I dunno.How old are you ? → thirty-five.Who is Laura ? → My brother.Say 'goodbye' → Alright.Two plus two → manny...复制代码
Framework: Tensorflow
No answering randomisation is implemented in this code, so the models answers with the same phrase way each time: 未实现回答的是随机化,仅对模型的末尾加入了稀疏层。
hello baby → hellohow old are you ? → twenty .i am lonely → i am notnice → you ' re not going to be okay .so rude → i ' m sorry .are you a robot or human? → no .are you better than siri? → yes .复制代码
Framework: Tensorflow
Google Official seq2seq implementation, attention included. Originlly for translation, can be used as Q/A; Google官方的seq2seq实现,采用了注意力机制(Luong et al., 2015),原本用于语言翻译,也适用于简单Q/A。
Framework: Torch 6.x Source code for a bunch of super nice articles by Jiwei Li - one of my favorite researches in the domain of neural conversational systems. Worth checking out.
tell me ... how long have you had this falling sickness ? → a few months, I guess .so i had the doctors test sammy ’s response to conditioning . → so he took the pills .what are you going to do ? → i ’m going to get you a new car .they fear your power your intellect . → i ’m not afraid of your power .复制代码
Framework: Torch 7
最早的对《A Neural Conversational Model》的实现之一,当时给的Demo效果非常有意思。
Hello? → Hi.How are you? → I'm fine.What's your name? → It's hard to describe.How so? → I'm not sure.What color is the sky? → It's blue.What is your job? → It's not that i'm a fucking werewolf!复制代码
Framework: Torch 7
从neuralconvo修改而来的,当时应该是第一个中文的RNN based chatbot DEMO。
Framework: Tensorflow 一个中文的Demo,说明比较详细,推荐。
result:
你到哪里去 →你不是说你不是我的你喜欢我吗? →我喜欢你你吃了吗? →我还没吃饭呢你喜欢喝酒吗? →我不知道你说话没有逻辑啊 →没有复制代码
Framework: python
看上去比较完整的一个项目,安装简单,说明比较完善,有提供训练的材料,英文为主。
Good morning! How are you doing? →I am doing very well, thank you for asking.You're welcome. →Do you like hats?复制代码
Framework: keras
这几个都是seq2seq的实现,但是在Chatbot上面还没有好的demo result。
A new generative chatbot whose training converges in few epochs, including a model pre-trained on a small but consistent dataset collected from dialogues of English courses online.
这个采用了生成模型的方式,待补充。
user: Hello! How are you?computer: i am fine , ok , well , thank you . user: What's your name?computer: janet . user: What do you like to do now?computer: let me think a minute . user: I want to chat about computer science.computer: i am glad to hear there . user: Are you a real girl or a computer program?computer: i am self employed . i would love to be well . user: Why don't you look for a job?computer: i do not know . i am the bank . user: So, you don't need a job!computer: no . i have to make a lot of money . 复制代码
Corpus
Get a lot of raw movie subtitles (~1.2Gb)
~ 40Mb after clearing out the technical data.
[中文]语料。大部分为由字幕生成的材料,少量其它对话(如以前的小黄鸡的材料,我从一位网友朋友那里要过来了,感谢他)。 其中results/xiaohuangji50w_fenciA.conv.zip为上面chatbot-zh-torch7的演示的训练材料。
[原射手网的打包字幕合集17G]
现已关闭的射手网有一个所有字幕的合集包,感兴趣的同学需要自行网上搜索下载。
这是他人收集的自然语言处理相关数据集,主要包含Question Answering,Dialogue Systems, Goal-Oriented Dialogue Systems三部分,都是英文文本。可以使用机器翻译为中文,供中文对话使用。
TODO
dgk_lost_conv中字幕生成的材料的问题是质量较差,这是因为字幕文件中包含了很多的旁白,或者单人连续说话的情况,而这些在处理的时候都没有剔除掉。希望有同学能够找到方法。 或者 从微博、QQ群、微信群等地方挖掘更多的1v1的对话材料。
Papers
贡献列表
Refs:
为了方便中文用户中对chatbot/NLP/DeepLearning感兴趣的朋友们互相交流,建了一个QQ群,欢迎您加入讨论: